

1

Design Automation: Term Definition and Methodical
Analysis for Software Selection

Johannes Willkomma · Vincent Wellera · Arthur von Bredowa · Carsten Putza · Johannes Henrich
Schleifenbauma

a Chair of Digital Additive Production (DAP) – RWTH Aachen University
Campus-Boulevard 73, 52074 Aachen, Germany

https://doi.org/10.58134/fh-aachen-rte_2025_008

Abstract This paper presents a comprehensive methodology for evaluating and selecting design
automation (DA) software tailored to the needs of mechanical engineering applications. As the
demands on product properties, life cycles, and variant diversity increase, the integration of
advanced technologies such as additive manufacturing (AM) and DA becomes crucial. A thorough
literature review was conducted to compile and define key terms related to DA, followed by the
creation of a list of relevant software. This software was then analysed and clustered based on
key criteria including user interface, application, design scripting, storage method, integration,
and sales model. The clustering results were visualized using Venn diagrams and portfolio
matrices to provide clear decision-making tools for engineers and companies. The analysis
highlights the prevalence of CAD/graphical user interfaces and the growing trend towards cloud-
based and subscription-model software. Design scripting emerged as a key differentiator in DA
software, offering advanced functionalities that are becoming increasingly important in complex
engineering environments. This paper offers a practical guide for selecting the most appropriate
DA software, tailored to specific industrial needs, and addresses the current gaps in systematic
software evaluation.

2

Introduction and Motivation
The increasing demands on product properties, shorter product life cycles, and greater
variant flexibility present significant challenges in the product development process.
Additionally, new emerging technologies like additive manufacturing (AM) offer cost-
effective production regardless of part complexity, making them ideal for low-volume or
highly customized products [1]. However, these advantages also result in a more intricate
and costly design process in addition to the mentioned higher requirements from the
application.

One promising solution to streamline and enhance the product development process is
design automation (DA). In addition, DA enables the creation of complex, biomorphic
structures that can be efficiently produced using AM [2]. This synergy between DA and AM
not only accelerates product development but also reduces costs, especially for products
with high variant flexibility.

A critical aspect of implementing a design configurator for DA effectively is the selection of
appropriate software. Given the diverse applications of DA, ranging from architectural
pattern generation to heat exchangers and structural components, the effectiveness and
performance of different software solutions can vary significantly.

The evaluation of DA software has been approached from various perspectives,
emphasizing their educational, industrial, and functional applications. In the educational
domain, studies assessed software based on integration into the design process,
computational architecture, and criteria such as availability of student versions, hardware
requirements, and costs [3]. For industrial applications, DA software solutions have been
categorized by their role in the design process and evaluated through case studies, such
as the comparison of Autodesk Fusion 360 and Siemens Solid Edge, which revealed
differences in manufacturing methods and output quality. In these evaluations, cloud-
based solutions showed advantages in computational speed and variety [4]. In terms of
functionality, research highlighted software features like low entry barriers, stand-alone
capabilities, and advanced design iteration tools. Studies demonstrated the importance of
intuitive user interfaces, robust simulation capabilities, and workflow efficiency,
exemplified by the design of an automotive shock absorber using low-complexity DA tools
[5] and the standalone nature of Autodesk Fusion 360, which achieved significant time
savings through constraint definition [6]. Additionally, categorizations such as "Assisted
CAD Modelling" versus "Functional CAD Programming Environments" shed light on the
trade-offs between low-code environments and traditional CAD modules [7].

A further focus lies on optimization capabilities, with topology optimization software being
evaluated across 70 solutions based on cycles, design weight, and structural performance
[8]. Moreover, challenges in DA adoption for mid-sized companies were identified,
emphasizing critical criteria such as non-structural constraints, iterative algorithms, and
simulation integration [9].

Despite the insights provided by these studies on the differences between various DA
software, a systematic guide for software selection remains lacking. Developers rarely
publish detailed descriptions of their software's capabilities or underlying algorithms,
making quantitative comparisons challenging. As a result, most studies rely on case studies
with a limited number of software tools, leaving a gap in comprehensive comparative
analyses. To assist users in selecting the right software for their needs, a detailed

3

examination, categorization, and evaluation of all available DA software is necessary,
considering additional features such as fluid dynamics, heat transfer, and specialized tools
or plugins.

In the field of computer-aided design numerous terms with overlapping or similar meanings
are frequently used for DA. Terms like generative design, algorithmic design, parametric
design, and DA lack agreed-upon definitions. To be able to categorize the software, these
terms must first be defined. Putz et al. offered an initial categorization and explanation of
these terms [10]. The idea of DA has been pursued in architecture for a long time, so that
the definition from this research field is also considered in this work. Caetano et al. used
the overarching term "computational design" and collected, analyzed, and compared
different definitions of parametric, generative, and algorithmic design through a literature
review based on architecture studies [11]. Building on this research, we expand the
definitions with perspectives from mechanical engineering. This integrated approach aims
to provide a comprehensive definition and categorization of these terms in the following
section. Following this, we present the methodology and results of the software
classification for design automation.

The aim of this paper is to develop a structured framework for the classification and
evaluation of DA software, to support a methodical and application-oriented software
selection process in the context of mechanical engineering and DA. First the key terms
related to DA are definied and then a clustering methodology based on relevant criteria
derived from literature and industry practice are defined.

Definitions of the Term Design Automation

The product development process can be simplified to the steps specification of
requirements, determination of functions and their structure, developing of initial design
concept and developing of detailed design [12]. The authors of this work define design
automation as follows. In design automation, one or more of the methods parametric,
algorithmic, and generative design are used to automate the steps conceptualizing,
designing, and elaborating of the product development process to create a 3D CAD model
of a part. By applying these methods in combination with the right software, design
configurators are set up. In the following, the three methods parametric, algorithmic, and
generative design are also defined.

In the context of architecture, parametric design is defined by Caetano et al. as “an
approach that describes a design symbolically based on the use of parameters” [11]. This
definition is derived from various architectural perspectives, where parametric design is
seen as the process of manipulating parameters and the relationships between them to
control and generate complex forms automatically [13–19]. In other definitions from
architecture, parametric design is described as a dynamic, rule-based approach that
leverages algorithmic thinking to define the relationship between design intent and
response. By using parameters and constraints, it enables the parallel development of
multiple design solutions and fosters flexibility in exploration. The boundaries between
parametric and generative design are often fluid, with both concepts frequently used
interchangeably or in combination [20–22]. Extending this definition to the field of
mechanical engineering, parametric design utilizes parameters to define and manipulate
the geometry of a model by establishing rules and relationships between different
components, so that the design can generate mechanical engineering parts and improve

4

the overall design quality [23, 24]. Combining these insights and creating a clear
differentiation to the other methods, we define parametric design as a process where
interdependent parameters define the geometry of the design. By assigning discrete values
to these parameters, the corresponding geometry is created.

Algorithmic design, as defined by Caetano et al., involves a direct correlation between the
algorithm and the generated model, ensuring traceability. It is considered a subset of
generative design, with the focus on algorithm development to achieve specific design
goals, often at the expense of producing fewer unexpected results compared to generative
design [11]. This definition is supported by architectural perspectives that see algorithmic
design as the systematic application of logical principles to generate space and form
through rule-based logic, inherent in architectural programs, typologies, and building codes
[25]. It often involves the use of scripting languages that allow designers to manipulate
code directly, initiating computational procedures that create digital forms [26, 27].
Expanding this definition within the context of engineering, algorithmic design is further
described as a process driven by a defined and logical set of rules that handle
computational complexity [28]. It involves creating step-by-step procedures that ensure
reliability, efficiency, and correctness in design solutions. Data plays a crucial role in this
process, serving as both input and output, guided by mathematical rules within the
algorithm [25]. This approach is widely used in mechanical engineering to automate and
optimize the design process, employing a variety of deterministic and stochastic algorithms
to solve complex engineering challenges [29, 30]. In summary, algorithmic design is a
design approach based on manually implemented rules or algorithms, creating a direct and
traceable causation between the algorithm and the design elements. This method allows
algorithmic design to be used independently of other methods like generative design,
offering a tool for generating, optimizing, and refining designs.

Caetano et al. define generative design as a design paradigm that employs algorithmic
descriptions with a higher degree of autonomy compared to parametric design. Generative
design-based methods can generate complex outputs from simple algorithmic descriptions,
resulting in a non-traceability between the program and the generated designs [11]. This
definition aligns with various architectural views where GD is characterized by its capacity
to enable indirect interaction between designers and the resulting products through
generative systems. It leverages computational power to autonomously develop and
evolve complex designs from simple inputs, often mimicking evolutionary processes in
virtual environments [31–34]. GD's iterative nature facilitates the exploration of multiple
design solutions, requiring designers to select the optimal outcome based on predefined
constraints [35, 36]. By closely integrating with algorithmic and parametric design, GD
offers an advanced framework for addressing complex design challenges and overcoming
traditional limitations [37–39]. Extending the definition from Caetano, GD is viewed as a
designer-driven, parametrically constrained process that operates on top of parametric
CAD systems. It aims to create novel designs by leveraging modern computing and
manufacturing capabilities [40]. Artificial intelligence tools can play a crucial role in
generating and optimizing multiple design solutions based on imposed constraints and
goals, typically through iterative processes [41]. Recent advancements include the use of
topology optimization and cloud computing to produce multiple optimized designs under
various conditions [42]. GD further supports the exploration of feasible design options
based on user-defined constraints, enhancing conceptual design and product development
[43]. Taking this additional information into account, we claim that generative design is a

5

method that autonomously generates multiple geometric variants using techniques like
evolutionary algorithms, optimization algorithms, and artificial intelligence. These
approaches enable the creation of complex designs, making GD a versatile and powerful
tool in contemporary design practices.

Methodology

This section outlines the methodology used to evaluate and cluster relevant design
automation software, culminating in a framework to assist companies in selecting
appropriate software for their needs. The approach is based on a comprehensive literature
review, followed by the identification, clustering, and analysis of design automation
software specific to the mechanical engineering industry. The results of this clustering are
visualized through Venn diagrams, providing clear insights into the software's capabilities
and aiding in decision-making.

The first step involved compiling an exhaustive list of design automation software that
meets the functional criteria identified in the literature review. This list was generated
through a combination of academic publications, online research, and with the help of AI
tools like Google Gemini to identify relevant software providers. Given the varying demands
across different industries, the focus was narrowed to proprietary software commonly used
in mechanical engineering. Implementation of algorithms in open-source tools like python
or matlab, which require extensive programming of the user, were excluded to maintain
consistency and relevance for industrial applications. Tyflopoulos et al. already offers a
comprehensive list of open source software and plug-ins for topology optimization [8].

Building on the literature for software selection, the clustering was based on six key criteria
[44]: user interface, application, design scripting, storage method, integration, and sales
model. Each software was evaluated against these criteria, which were deemed relevant
for the mechanical engineering sector.

The user interface determines how engineers interact with design automation software,
directly influencing its usability and adoption within existing workflows. Three primary
types of interfaces are defined:

 CAD/Graphical: These interfaces allow users to define parameters such as
dimensions, material properties, or load conditions through graphical menus. They
align closely with workflows already familiar to many engineers, particularly in CAD
environments, which simplifies adoption. Certain geometric regions can be
constrained or optimized, ensuring that critical design constraints are respected.
This approach is ideal for engineers with limited programming expertise, offering a
smooth transition into design automation workflows.

 Visual Scripting: In this approach, users interact with the software through
graphical programming “nodes”. Nodes can represent parameters, variables, or
geometric operations, and are connected to define workflows and generate
geometry. Visual scripting is particularly advantageous for tasks involving repeated
operations, as node configurations can be reused across different projects, saving
time, which enables rapid iteration and customization of designs while remaining
accessible to non-programmers.

6

 Code Scripting: These allow users to write text-based scripts to define geometries
and automate workflows. This method offers the greatest degree of flexibility and
customization but requires more advanced programming knowledge.

DA software is evaluated based on its ability to address specific mechanical engineering
challenges. These are divided into the following key applications:

 Mechanical: This includes the optimization of parts subjected to mechanical loads,
ensuring that designs meet performance criteria under stress.

 Fluid Dynamics: Software capable of optimizing designs to manage fluid flow is
essential for components like heat exchangers or aerodynamic surfaces.

 Thermal: DA for heat transfer focuses on designing components to handle thermal
loads effectively, such as cooling systems or heat sinks.

Each of these applications ensures that DA software is capable of generating designs that
meet the functional requirements of various engineering fields. Software limited to
optimizing visual or aesthetic aspects is excluded from this analysis.

Design scripting refers to automating geometry creation and design process through
rule-based scripting mechanisms, enabling the rapid generation of design alternatives
based on changing input parameters. While it overlaps conceptually with visual or code
scripting, it focuses on automation logic and system integration rather than interface.
Algorithms define the relationships between design requirements and geometric output,
ensuring the generated designs meet specified criteria under varying boundary conditions.
For example, parameterized sliders or input fields can adjust dimensions or loads,
triggering the software to produce updated geometries without requiring manual
intervention.

Design scripting functionality often includes the definition of logical or geometrical
relationships through algorithms, parameter mapping, and user-controlled input fields
(e.g., sliders or input boxes). From an engineering perspective, it is especially valuable for
managing product variants, configuring customer-specific requirements, or generating
data-driven geometry transformations.

In this study, a software is categorized as offering design scripting if it allows users to:

 Define rules and conditions that govern geometric or structural behavior,
 Generate or update entire designs automatically in response to varying parameters,
 Do so without requiring reentry into the manual design process for each change.

This distinguishes design scripting as a high-level design automation method, which
supports both mass customization and parametric engineering workflows. As such, it
represents a core enabler for advanced digital product development pipelines in mechanical
engineering and beyond. As no external programming interfaces (APIs) or third-party
scripting plug-ins are excluded from the study, only scripting environments that are
natively embedded within the respective design software are considered compared to the
description of CAD design scripting languages from Celani et al. [45]

The storage method has significant implications for workflow efficiency, data security,
and computational power. Two primary characteristics are evaluated:

 Local: Data is stored and processed on local devices or company servers. This often
requires significant investments in hardware infrastructure.

7

 Cloud-based: Data is processed and stored on remote servers, leveraging cloud
infrastructure. Cloud solutions reduce hardware demands, allow real-time
collaboration, and facilitate large-scale computational tasks through scalable
resources.

Cloud-based solutions are particularly advantageous for distributed teams and projects
requiring high computational power. However, concerns about data security and internet
dependency must be addressed.

Integration evaluates whether the software can seamlessly extend its capabilities across
additional stages of the design-to-manufacturing workflow:

 Standalone: These are designed to perform specific DA tasks without offering
additional features like simulation or AM pre-processing.

 Integrated: These combine DA functionality with other critical steps, such as
simulation, topology optimization, or AM-specific adaptations like support structure
generation. Some solutions also offer API-based integration for custom workflows.
This ensures smooth transitions between design and production, reducing time and
effort in transferring data between platforms.

The sales model of DA software influences its cost-effectiveness, accessibility, and
suitability for different organizational needs:

 Subscription-based: Users pay a recurring fee, typically monthly or annually. These
often include regular updates and support services.

 One-time purchase: Software is purchased outright, granting indefinite use without
recurring costs.

 Pay-per-design: Charges are based on the number of designs generated or
processed.

For each software, information was gathered through an extensive review of manufacturer
websites, third-party reviews, tutorials, and white papers. Where necessary, direct
inquiries were made to the software developers to clarify specific features. Each criterion
was then evaluated as "fulfilled," "partially fulfilled," or "not fulfilled." The results were
compiled into a clustering table, with criteria visually represented in Venn diagrams using
the BioVenn tool [46]. The diagrams illustrate the overlap between software features, with
software meeting multiple criteria positioned in overlapping regions.

The methodology is designed to be adaptable across industries and evolving software
landscapes. It can be extended by incorporating additional criteria (e.g. AI integration,
compliance standards) and scaled through automated tools or integration into decision-
support systems.

Software List and Clustering of the Results

This chapter presents the compiled software list and the results of the clustering analysis.
The outcome of this work is a decision-making tool for engineers and companies to select
the most suitable DA software for their specific applications. Table 1 illustrates the
clustering results, providing a comprehensive overview of design automation software
relevant to engineers. The table not only showcases the software but also demonstrates
the developed clustering methodology, with the criteria used for clustering listed in the top
rows. To ensure the continued relevance of this study, the clustering table is maintained

8

and regularly updated online at dap-aachen.de 1 , allowing users to access the latest
software landscape and submit suggestions for modifications or additions directly to the
author.

Table 1: Tabular summary of the cluster, taking into account all software under consideration
and fulfillment of the criteria.

 Criteria

User
Interface Application

Storage
Method

Inte-
gration

Sales
Model

C
A
D

/g
ra

p
h
ic

al

vi
su

a
l
sc

ri
p
ti
n
g

co
d
e

sc
ri
p
ti
n
g

fl
u
id

 d
yn

a
m

ic
s

m
ec

h
a
n
ic

al

h
ea

t
tr

an
sf

er

d
es

ig
n
 s

cr
ip

ti
n
g

cl
ou

d
-b

a
se

d

lo
ca

l

in
te

g
ra

te
d

st
an

d
-a

lo
n
e

su
b
sc

ri
p
ti
n
g

on
e-

ti
m

e
p
u
rc

h
a
se

p
ay

-p
er

-d
es

ig
n

Developer Software
name

Altair

Inspire • ◦ ◐ ◦ • ◦ ◦ • • ◦ • • ◦ ◦
Optistruct • ◦ ◐ ◦ • ◦ ◦ • • • ◦ • ◦ ◦

Ansys

Mechanical • ◦ ◐ ◦ • ◦ ◦ • • ◦ • • • •
Discovery • ◦ ◐ ◦ • ◦ ◦ • • • ◦ • • •
Fluent • ◦ ◐ • ◦ • ◦ • • ◦ • • • •

Autodesk

Fusion360 • ◦ ◐ • • ◦ ◦ • ◦ • ◦ • ◦ •
Inventor • ◦ ◐ ◦ • ◦ ◦ • • • ◦ • ◦ •

BETA ANSA • ◦ ◐ ◦ • ◦ ◦ ◦ • ◦ • • ◦ ◦

1 https://dap-aachen.de/project/design-automation-software-overview

Legend:

● fulfilled

○ not fulfilled

◐ partially fulfilled

9

Carbon CogniCAD • ◦ ◦ ◦ • • ◦ • ◦ • ◦ • ◦ •
COMSOL Multiphysics • ◦ ◐ • • • ◦ ◦ • ◦ • ◦ • ◦

Dassault
Systemes

3DExperience • • ◐ • • • • • ◦ • ◦ • ◦ ◦
Abaqus • ◦ ◐ ◦ • ◦ ◦ • • ◦ • • ◦ ◦
Catia 3ds • • ◐ • • ◦ • • • • ◦ • ◦ ◦
Solidworks • ◦ ◐ ◦ • ◦ ◦ ◦ • • ◦ • • ◦

Diabatix ColdStream • ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ • • ◦ ◦
DYNAmore
(Ansys) LS-TaSC • ◦ ◐ ◦ • ◦ ◦ ◦ • ◦ • • ◦ ◦
ENGYS

HELYX-
Adjoint • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • ◦

FEMTools DDS • ◦ ◐ ◦ • ◦ ◦ ◦ • ◦ • • • ◦
FRIENDSHIP
SYSTEMS

CAESES • ◦ ◐ • ◦ ◦ • ◦ • ◦ • • ◦ ◦

Hexagon

MSC Apex • ◦ ◐ ◦ • ◦ ◦ ◦ • ◦ • • ◦ ◦
MSC Nastran • ◦ ◐ ◦ • ◦ ◦ • • ◦ • • ◦ ◦

InfiniteForm,
Inc

InfiniteForm • ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • n/a n/a n/a

INTES PERMAS • ◦ ◐ ◦ • • ◦ ◦ • ◦ • • ◦ ◦
LimitState FORM • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • • ◦ ◦

10

Marius Kintel OpenSCAD ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ • / / /

nTopology nTop ◦ • ◐ • • • • • • ◦ • • ◦ ◦
PTC

Creo
Parametric • ◦ ◐ ◦ • ◦ ◦ • • • ◦ • ◦ ◦

Quint
OPTISHAPE-
TS • ◦ ◐ ◦ • ◦ ◦ ◦ • ◦ • • ◦ ◦

Robert
McNeel
& Associates

Rhino 8 • • • • • • • ◦ • • ◦ ◦ • ◦
Salome Salome 9 • ◦ • ◦ ◦ ◦ • ◦ • • ◦ / / /

Siemens

NX • • ◐ ◦ • ◦ • ◦ • • ◦ • ◦ ◦
SolidEdge • ◦ ◐ ◦ • ◦ ◦ ◦ • • ◦ • ◦ ◦

Simright Toptimizer • ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • • ◦ ◦
Synera Synera ◦ • • • • • • ◦ • • ◦ • ◦ •
ToffeeX ToffeeX • ◦ ◦ • ◦ • ◦ • ◦ ◦ • • ◦ ◦
trinckle PARAMATE ◦ ◦ • ◦ ◦ ◦ • • ◦ • ◦ • ◦ ◦
VR&D GENESIS • ◦ ◐ ◦ • ◦ ◦ ◦ • ◦ • • ◦ ◦

The clustering analysis reveals several key trends in the DA software landscape. 91 % of
the software options provide a CAD or graphical user interface, making it the most common
interface type. In contrast, only 17 % of the software offers a visual scripting interface,
and code scripting is the least commonly available, offered by just 14 % of the software.
In terms of application-specific functionalities, 80 % of the DA software supports
applications related to mechanical loads, making it the most widely supported application
type. Software supporting fluid dynamics applications is available in 29 % of the cases,
while only 29 % of the software includes features for thermal transfer applications, making

11

it the least common. Design scripting capabilities, which allow for automated design tasks,
are provided by 29 % of the software. Regarding storage solutions, 4 % of the software
supports cloud storage, whereas 80 % offers local storage options, indicating a preference
for locally managed data among the software analyzed. The integration of DA software into
existing workflows is split, with 43 % of the software being integrated solutions and 60 %
stand-alone solutions. Due to the criteria used, there is no overlap between these
categories. Finally, 86 % of the software operates on a subscription-based model, making
it the predominant sales model. A one-time purchase option is available for 23 % of the
software, while 20 % offer a pay-per-design or use model. Open-source software, such as
OpenScad, was excluded from this analysis as it was the only software of its kind
considered. A graphical representation of the results using Venn diagrams is shown in
Figure 1.

Figure 1: Graphical representation of the software classification results using Venn diagrams
(absolute numbers in brackets)

Discussion

The analysis indicates that DA software can meet all the key requirements of engineers
and companies, with each criterion being fulfilled by at least one software solution. A
notable trend is the strong prevalence of CAD/graphical user interfaces, which suggests
that many DA software solutions prioritize ease of use and accessibility by offering familiar
interfaces. The mechanical application is the most frequently supported, while fluid

12

dynamics and thermal transfer applications are also well-represented. The significant
presence of cloud-based solutions, offered by 51 % of the software, highlights the growing
accessibility of computational power through cloud computing. Subscription models are the
most common, reflecting the broader industry trend towards software-as-a-service (SaaS).
The equal representation of integrated and stand-alone solutions provides companies with
flexibility in choosing software that either focuses solely on DA or includes additional
workflow steps.

Design scripting stands out as a distinct and advanced feature within DA software, often
supporting a broad range of applications, including mechanical, fluid dynamics, and
thermal transfer. This makes design scripting a forward-looking technology, potentially
representing the highest level of DA. The dominance of the CAD market by large companies
such as Autodesk, Dassault Systèmes, Siemens, Hexagon, and PTC is evident, with these
companies controlling 83 % of market revenue (2017) [47]. However, smaller companies
have carved out a niche by adopting innovative approaches like design scripting, which is
currently supported by only 9 out of 35 analysed software solutions. Historically, design
scripting tools are relatively recent developments, with companies like Synera (2018),
nTop (2015), and Trinckle (2012) leading the way [48–50]. Larger companies have only
recently integrated design scripting tools, with Dassault Systèmes and Siemens
implementing them in 2022 and 2020, respectively [51, 52]. This delay could be due to
the higher entry barriers associated with design scripting, such as the need for specialized
visual or code scripting interfaces, which require additional training and thus present a
steeper learning curve [53]. While established software companies may perceive this as a
challenging market to enter, smaller companies have leveraged design scripting to
differentiate themselves and capture new market segments. Additionally, design scripting
appears to be driven more by a technology push than by market demand, as evidenced by
the scientific activity surrounding it and the fact that companies like Synera and Trinckle
originated from research projects [48, 50].

The clustering results provide engineers and companies with valuable insights for selecting
the most appropriate DA software. A suggested procedure for software selection would
consider three steps. The process begins with a requirements analysis, where the user
identifies which clustering characteristics are essential or desirable. These clusters can then
be used to narrow down the list of DA software options by focusing on the most critical
features. The Venn diagrams allow users to quickly identify software that meets these
criteria. By progressively filtering through the diagrams, starting with the most important
feature, the list can be reduced to approximately three software options. This shortlist can
be further refined through additional literature review and, if available, comparative
studies.

For a more precise selection, the portfolio matrix shown in Figure 2 can be used. This
matrix plots software options based on the diversity of variants they support and the
complexity of the applications they handle. In this case, complexity can be defined as the
number of functions the part should fulfil.

The classification into four categories is derived from the clustering results:

 Basic DA Software addresses low variant diversity and low complexity. These
tools typically support at least one application and offer basic simulation features.

13

 Specialized DA Software handles high complexity but low variant diversity. These
tools must support at least one specific application and include advanced simulation
capabilities tailored to dedicated use cases.

 Extended DA Software targets scenarios with high variant diversity and lower
complexity. These tools support at least the functionality of design scripting,
enabling flexible and efficient variant generation.

 Performance DA Software supports both high complexity and high variant
diversity. These tools include design scripting, multiple application domains, and
advanced optimization or simulation tools (e.g., topology optimization or FEM).

Figure 2: Portfolio matrix for DA software selection

Conclusion and outlook
In summary, the integration of DA with Additive Manufacturing presents a transformative
approach to product development, addressing the increasing complexity and customization
demands in modern engineering. This paper analyzed and clustered commercial software
solutions for DA.

The clustering analysis conducted reveals significant trends within the DA software
landscape, emphasizing the predominance of user-friendly CAD interfaces and a notable
shift towards cloud-based solutions. The findings indicate that while established companies
dominate the market, innovative smaller firms are making strides by incorporating
advanced features like design scripting, which enhances flexibility and efficiency in design
tasks.

This work proposes a systematic approach for engineers to evaluate their options of DA
software based on key criteria such as user interface type, application focus, integration

14

capabilities, and sales models. By employing the developed clustering methodology and
visual aids like Venn diagrams, users choose an appropriate DA software suited their
specific needs.

Future work should update the clustering methodology with new software and user
feedback, explore applicability across industries, and include non-commercial tools.
Developing a software-based clustering approach and enabling re-evaluation during
implementation could further enhance the process.

Moreover, emerging technologies such as machine learning-assisted simulation tools (e.g.,
Ansys SimAI) and generative AI systems are poised to significantly impact the DA software
landscape. These technologies may enable predictive, data-driven design automation and
further reduce manual input through intelligent design space exploration. Their integration
should be closely monitored and incorporated into future evaluations of DA software
capabilities.

15

Literature
[1] G. Moroni, S. Petro, and W. Polini, Geometrical product specification and verification

in additive manufacturing, CIRP Annals, vol. 66, no. 1, pp. 157–160, 2017, doi:
10.1016/j.cirp.2017.04.043.

[2] Lithgow, D., Morrison, C., Pexton, G., Panarotto, M., Müller, J. R., Almefelt, L.,
McLaren, A., Design automation for customised and large-scale additive
manufacturing: a case study on custom kayaks, Proceedings of the Design Society:
International Conference on Engineering Design. Vol. 1. No. 1., pp. 699–708, 2019,
doi: 10.1017/dsi.2019.74.

[3] S. Junk and L. Burkart, Comparison of CAD systems for generative design for use with
additive manufacturing, Procedia CIRP, vol. 100, no. 31, pp. 577–582, 2021, doi:
10.1016/j.procir.2021.05.126.

[4] K. Szabó and G. Hegedűs, Brief overview of generative design support software,
Design of Machines and Structures, vol. 10, no. 2, pp. 123–132, 2020, doi:
10.32972/dms.2020.023.

[5] M. Pollák, M. Kočiško, and J. Dobránsky, Analysis of software solutions for creating
models by a generative design approach, IOP Conf. Ser.: Mater. Sci. Eng., vol. 1199,
no. 1, p. 12098, 2021, doi: 10.1088/1757-899X/1199/1/012098.

[6] N. Babel and M. Metzger, Untersuchung künstlicher Intelligenz im Bereich der
Konstruktion mit Generativer Design Software. 1258 KB, Hochschule für angewandte
Wissenschaften Landshut, Landshut, 2021.

[7] D. Gerhard, T. Köring, and M. Neges, Generative Engineering and Design – A
Comparison of Different Approaches to Utilize Artificial Intelligence in CAD Software
Tools in IFIP Advances in Information and Communication Technology, vol. 667,
Product Lifecycle Management. PLM in Transition Times: The Place of Humans and
Transformative Technologies: 19th IFIP WG 5.1 International Conference, PLM 2022,
Grenoble, France, July 10–13, 2022, Revised Selected Papers, F. Noël, F. Nyffenegger,
and L. Rivest, Eds., 1st ed., Cham: Springer Nature Switzerland; Imprint Springer,
2023, pp. 206–215.

[8] E. Tyflopoulos and M. Steinert, A Comparative Study of the Application of Different
Commercial Software for Topology Optimization, Applied Sciences, vol. 12, no. 2, p.
611, 2022, doi: 10.3390/app12020611.

[9] C. E. Westerveld, Generative Design Recommended actions to smooth the way for
production of generative designs with additive manufacturing. Masterarbeit, University
of Twente, Twente, 2021.

[10] Putz, C., Willkomm, J., Reich, S., Ziegler, S., Schleifenbaum, J., Digitale
Assistenzsysteme für die effiziente Entwicklung einer neuen Produktgeneration,
Proceedings of the 19th Rapid. Tech 3D Conference Erfurt, Germany, 2023, doi:
10.3139/9783446479425.016.

[11] I. Caetano, L. Santos, and A. Leitão, Computational design in architecture: Defining
parametric, generative, and algorithmic design, Frontiers of Architectural Research,
vol. 9, no. 2, pp. 287–300, 2020, doi: 10.1016/j.foar.2019.12.008.

[12] Design of technical products and systems - Model of product design, VDI 2221 Blatt
1, VDI Verein Deutscher Ingenieure e.V., 2019-11-00.

[13] Aish, R., Woodbury, R., Transformations on Parametric Design Models: A Case Study
on the Sagrada Famialia Columns in Smart Graphics5th International symposium on
smart graphics, Frauenwörth Cloister, Germany, 2005.

16

[14] C. Barrios, Transformations on parametric design models: A case study on the Sagrada
Familia columns, Computer Aided Architectural Design Futures 2005: Proceedings of
the 11th International CAAD Futures Conference held at the Vienna University of
Technology, Vienna, Austria, on June 20–22, 2005, 2005, doi: 10.1007/1-4020-3698-
1_37.

[15] Elghandour, A., Saleh, A., Aboeineen, O., Elmokadem, A., Using parametric design to
optimize building’s façade skin to improve indoor daylighting performance, In
Proceedings of the 3rd IBPSA-England Conference BSO, pp. 353–361, 2016.

[16] B. Kolarevic, Architecture in the digital age: Taylor & francis, 2003.
[17] J. Monedero, Parametric design: a review and some experiences, Automation in

construction, vol. 9, no. 4, pp. 369–377, 2000, doi: 10.1016/S0926-5805(99)00020-
5.

[18] K. Nassar, W. Thabet, and Y. Beliveau, Building assembly detailing using constraint-
based modeling, Automation in construction, vol. 12, no. 4, pp. 365–379, 2003, doi:
10.1016/S0926-5805(02)00090-0.

[19] M. A. Zboinska, Hybrid CAD/E platform supporting exploratory architectural design,
Computer-Aided Design, vol. 59, pp. 64–84, 2015, doi: 10.1016/j.cad.2014.08.029.

[20] N. Gu, R. Yu, and P. A. Behbahani, Parametric design: Theoretical development and
algorithmic foundation for design generation in architecture, Handbook of the
Mathematics of the Arts and Sciences, pp. 1361–1383, 2021, doi: 10.1007/978-3-
319-57072-3_8.

[21] W. Jabi, Parametric design for architecture: Hachette UK, 2013.
[22] C. Lee, S. Shin, and R. R. Issa, Rationalization of free-form architecture using

generative and parametric designs, Buildings, vol. 13, no. 5, p. 1250, 2023, doi:
10.3390/buildings13051250.

[23] Cucos, M. M., Pista, I. M., Ripanu, M. I., Product engineering design enhancing by
parameterizing the 3D solid model, MATEC Web of Conferences, 2018, doi:
10.1051/matecconf/201817805011.

[24] F. Hoisl and K. Shea, Three-dimensional labels: a unified approach to labels for a
general spatial grammar interpreter, AI EDAM, vol. 27, no. 4, pp. 359–375, 2013, doi:
10.1017/S0890060413000188.

[25] Tedeschi, A., Lombardi, D., The algorithms-aided design (AAD): Le Penseur, 2017.
[26] R. Oxman, Thinking difference: Theories and models of parametric design thinking,

Design studies, vol. 52, pp. 4–39, 2017, doi: 10.1016/j.destud.2017.06.001.
[27] Queiroz, N., Dantas, N., Nome, C., Vaz, C., Designing a Building envelope using

parametric and algorithmic processes, Proceedings of the 19th Conference of the
Iberoamerican Society of Digital Graphics, pp. 797–801, 2015, doi: 10.5151/despro-
sigradi2015-sp90284.

[28] T. Hnin, Getting Started With Algorithmic Design In Architecture in 2024: A
Comprehensive Guide. [Online]. Available: https://www.novatr.com/blog/
algorithmic-design-in-architecture#0

[29] B. Cheong, P. Giangrande, X. Zhang, M. Galea, P. Zanchetta, and P. Wheeler,
Evolutionary multiobjective optimization of a system-level motor drive design, IEEE
Transactions on Industry Applications, vol. 56, no. 6, pp. 6904–6913, 2020, doi:
10.1109/TIA.2020.3016630.

[30] J. O. Agushaka and A. E. Ezugwu, Advanced arithmetic optimization algorithm for
solving mechanical engineering design problems, Plos one, vol. 16, no. 8, e0255703,
2021, doi: 10.1371/journal.pone.0255703.

17

[31] Fischer, T., Herr, C. M., Teaching generative design, Proceedings of the 4th Conference
on Generative Art, pp. 147–160, 2001.

[32] Frazer, J., Frazer, J., Liu, X., Tang, M., Janssen, P., Generative and evolutionary
techniques for building envelope design, Generative Art 2002, 5th International
Conference GA2002, 2002.

[33] J. Krause and U. S. BArch, The Creative Process of Generative Design in Architecture,
GA2003 (6th), 2003.

[34] J. McCormack, A. Dorin, and T. Innocent, Generative Design: A Paradigm for Design
Research in Futureground - DRS International Conference 2004Futureground - DRS
International Conference 2004, Melbourne, Australia, 2004.

[35] M. Bernal, J. R. Haymaker, and C. Eastman, On the role of computational support for
designers in action, Design studies, vol. 41, pp. 163–182, 2015, doi:
10.1016/j.destud.2015.08.001.

[36] A. Chaszar and S. C. Joyce, Generating freedom: Questions of flexibility in digital
design and architectural computation, International Journal of Architectural
Computing, vol. 14, no. 2, pp. 167–181, 2016, doi: 10.1177/1478077116638945.

[37] S. Abrishami, J. Goulding, F. P. Rahimian, and A. Ganah, Integration of BIM and
generative design to exploit AEC conceptual design innovation, Information
Technology in Construction, vol. 19, pp. 350–359, 2014.

[38] F. A. Bukhari, A Hierarchical Evolutionary Algorithmic Design (HEAD) system for
generating and evolving building design models, Queensland University of Technology,
2011.

[39] Humppi, H., Österlund, T., Algorithm-aided BIM, Complexity & simplicity–Proceedings
of the 34th eCAADe conference, pp. 601–609, 2016.

[40] S. Krish, A practical generative design method, Computer-Aided Design, vol. 43, no.
1, pp. 88–100, 2011, doi: 10.1016/j.cad.2010.09.009.

[41] F. Buonamici, M. Carfagni, R. Furferi, Y. Volpe, and L. Governi, Generative design: an
explorative study, Computer-Aided Design and Applications, vol. 18, no. 1, pp. 144–
155, 2020, doi: 10.14733/cadaps.2021.144-155.

[42] S. Oh, Y. Jung, S. Kim, I. Lee, and N. Kang, Deep generative design: Integration of
topology optimization and generative models, Journal of Mechanical Design, vol. 141,
no. 11, p. 111405, 2019, doi: 10.1115/1.4044229.

[43] M. M. Nisar, S. Zia, M. Fenoon, and O. Alquabeh, Generative design of a mechanical
pedal, International Journal of Engineering and Management Sciences, vol. 6, no. 1,
pp. 48–58, 2021, doi: 10.21791/IJEMS.2021.1.5.

[44] J. Becker, A. Winkelmann, and M. Philipp, Entwicklung eines
Referenzvorgehensmodells zur Auswahl und Einführung von Office Suiten,
Arbeitsberichte des Instituts für Wirtschaftsinformatik, 2007.

[45] G. Celani and C. E. V. Vaz, CAD scripting and visual programming languages for
implementing computational design concepts: A comparison from a pedagogical point
of view, International Journal of Architectural Computing, vol. 10, no. 1, pp. 121–137,
2012, doi: 10.1260/1478-0771.10.1.12.

[46] T. Hulsen, J. de Vlieg, and W. Alkema, BioVenn–a web application for the comparison
and visualization of biological lists using area-proportional Venn diagrams, BMC
genomics, vol. 9, pp. 1–6, 2008, doi: 10.1186/1471-2164-9-488.

[47] Jon Peddie Research, & Business Advantage, Computer-aided design (CAD) market
revenue share worldwide, in 2016, by vendor. [Online]. Available: https://

18

web.archive.org/web/20230412082730/https://www.statista.com/statistics/779090/
worldwide-cad-market-revenue-share/ (accessed: Aug. 28 2024).

[48] Freie Univerität Berlin, Gründungsprojekt Trinckle 3D gehört zu den besten Ideen für
Start-ups in Deutschland: Die Ausgründung der Freien Universität Berlin wurde vom
Bundeswirtschaftsministerium auf der IFA ausgezeichnet / mit Pressefoto. [Online].
Available: https://web.archive.org/web/20220302040322/https://www.fu-berlin.de/
presse/informationen/fup/2012/fup_12_246/index.html (accessed: Nov. 22 2023).

[49] nTop, Our story: How we got here. [Online]. Available: https://web.archive.org/web/
20231014222506/https://www.ntop.com/company/about-us/ (accessed: Nov. 22
2023).

[50] Synera, Über uns - Synera: Meilensteine auf dem Weg in eine neue Ära des
Engineerings. [Online]. Available: https://web.archive.org/web/20231122153558/
https://de.synera.io/about (accessed: 22.11.23).

[51] Y. Barbier, NEW CATIA Visual Scripting | R2023x native app, cloud or on premise.
[Online]. Available: https://web.archive.org/web/20230528120921/https://
blog.3ds.com/brands/catia/new-catia-visual-scripting-r2023x-native-app-cloud-or-
on-premise/ (accessed: Nov. 22 2023).

[52] W. Chanatry, Algorithmic Modeling coming soon to NX. [Online]. Available: https://
web.archive.org/web/20221204113251/https://blogs.sw.siemens.com/nx-design/
algorithmic-modeling-coming-soon-to-nx/ (accessed: Nov. 22 2023).

[53] D. Vannusov, V. Dadonov, and M. Tereshchenko, Organizational features of innovative
CAD implementation in existing production systems, MATEC Web Conf., vol. 311, p.
2009, 2020, doi: 10.1051/matecconf/202031102009.

Kontaktangaben
Johannes Willkomm
RWTH Aachen University - Digital Additive Production DAP
Campus Boulevard 30, 52074 Aachen, Germany
E-Mail: johannes.willkomm@dap.rwth-aachen.de
WEB: http://www.dap-aachen.de

