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Abstract This paper presents a comprehensive methodology for evaluating and selecting design 
automation (DA) software tailored to the needs of mechanical engineering applications. As the 
demands on product properties, life cycles, and variant diversity increase, the integration of 
advanced technologies such as additive manufacturing (AM) and DA becomes crucial. A thorough 
literature review was conducted to compile and define key terms related to DA, followed by the 
creation of a list of relevant software. This software was then analysed and clustered based on 
key criteria including user interface, application, design scripting, storage method, integration, 
and sales model. The clustering results were visualized using Venn diagrams and portfolio 
matrices to provide clear decision-making tools for engineers and companies. The analysis 
highlights the prevalence of CAD/graphical user interfaces and the growing trend towards cloud-
based and subscription-model software. Design scripting emerged as a key differentiator in DA 
software, offering advanced functionalities that are becoming increasingly important in complex 
engineering environments. This paper offers a practical guide for selecting the most appropriate 
DA software, tailored to specific industrial needs, and addresses the current gaps in systematic 
software evaluation. 
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Introduction and Motivation 
The increasing demands on product properties, shorter product life cycles, and greater 
variant flexibility present significant challenges in the product development process. 
Additionally, new emerging technologies like additive manufacturing (AM) offer cost-
effective production regardless of part complexity, making them ideal for low-volume or 
highly customized products [1].  However, these advantages also result in a more intricate 
and costly design process in addition to the mentioned higher requirements from the 
application. 

One promising solution to streamline and enhance the product development process is 
design automation (DA). In addition, DA enables the creation of complex, biomorphic 
structures that can be efficiently produced using AM [2]. This synergy between DA and AM 
not only accelerates product development but also reduces costs, especially for products 
with high variant flexibility. 

A critical aspect of implementing a design configurator for DA effectively is the selection of 
appropriate software. Given the diverse applications of DA, ranging from architectural 
pattern generation to heat exchangers and structural components, the effectiveness and 
performance of different software solutions can vary significantly.  

The evaluation of DA software has been approached from various perspectives, 
emphasizing their educational, industrial, and functional applications. In the educational 
domain, studies assessed software based on integration into the design process, 
computational architecture, and criteria such as availability of student versions, hardware 
requirements, and costs [3]. For industrial applications, DA software solutions have been 
categorized by their role in the design process and evaluated through case studies, such 
as the comparison of Autodesk Fusion 360 and Siemens Solid Edge, which revealed 
differences in manufacturing methods and output quality. In these evaluations, cloud-
based solutions showed advantages in computational speed and variety [4]. In terms of 
functionality, research highlighted software features like low entry barriers, stand-alone 
capabilities, and advanced design iteration tools. Studies demonstrated the importance of 
intuitive user interfaces, robust simulation capabilities, and workflow efficiency, 
exemplified by the design of an automotive shock absorber using low-complexity DA tools 
[5] and the standalone nature of Autodesk Fusion 360, which achieved significant time 
savings through constraint definition [6]. Additionally, categorizations such as "Assisted 
CAD Modelling" versus "Functional CAD Programming Environments" shed light on the 
trade-offs between low-code environments and traditional CAD modules [7]. 

A further focus lies on optimization capabilities, with topology optimization software being 
evaluated across 70 solutions based on cycles, design weight, and structural performance 
[8]. Moreover, challenges in DA adoption for mid-sized companies were identified, 
emphasizing critical criteria such as non-structural constraints, iterative algorithms, and 
simulation integration [9].  

Despite the insights provided by these studies on the differences between various DA 
software, a systematic guide for software selection remains lacking. Developers rarely 
publish detailed descriptions of their software's capabilities or underlying algorithms, 
making quantitative comparisons challenging. As a result, most studies rely on case studies 
with a limited number of software tools, leaving a gap in comprehensive comparative 
analyses. To assist users in selecting the right software for their needs, a detailed 
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examination, categorization, and evaluation of all available DA software is necessary, 
considering additional features such as fluid dynamics, heat transfer, and specialized tools 
or plugins. 

In the field of computer-aided design numerous terms with overlapping or similar meanings 
are frequently used for DA. Terms like generative design, algorithmic design, parametric 
design, and DA lack agreed-upon definitions. To be able to categorize the software, these 
terms must first be defined. Putz et al. offered an initial categorization and explanation of 
these terms [10]. The idea of DA has been pursued in architecture for a long time, so that 
the definition from this research field is also considered in this work. Caetano et al. used 
the overarching term "computational design" and collected, analyzed, and compared 
different definitions of parametric, generative, and algorithmic design through a literature 
review based on architecture studies [11]. Building on this research, we expand the 
definitions with perspectives from mechanical engineering. This integrated approach aims 
to provide a comprehensive definition and categorization of these terms in the following 
section. Following this, we present the methodology and results of the software 
classification for design automation. 

The aim of this paper is to develop a structured framework for the classification and 
evaluation of DA software, to support a methodical and application-oriented software 
selection process in the context of mechanical engineering and DA. First the key terms 
related to DA are definied and then a clustering methodology based on relevant criteria 
derived from literature and industry practice are defined. 

Definitions of the Term Design Automation  

The product development process can be simplified to the steps specification of 
requirements, determination of functions and their structure, developing of initial design 
concept and developing of detailed design [12]. The authors of this work define design 
automation as follows. In design automation, one or more of the methods parametric, 
algorithmic, and generative design are used to automate the steps conceptualizing, 
designing, and elaborating of the product development process to create a 3D CAD model 
of a part. By applying these methods in combination with the right software, design 
configurators are set up. In the following, the three methods parametric, algorithmic, and 
generative design are also defined. 

In the context of architecture, parametric design is defined by Caetano et al. as “an 
approach that describes a design symbolically based on the use of parameters” [11]. This 
definition is derived from various architectural perspectives, where parametric design is 
seen as the process of manipulating parameters and the relationships between them to 
control and generate complex forms automatically [13–19]. In other definitions from 
architecture, parametric design is described as a dynamic, rule-based approach that 
leverages algorithmic thinking to define the relationship between design intent and 
response. By using parameters and constraints, it enables the parallel development of 
multiple design solutions and fosters flexibility in exploration. The boundaries between 
parametric and generative design are often fluid, with both concepts frequently used 
interchangeably or in combination [20–22]. Extending this definition to the field of 
mechanical engineering, parametric design utilizes parameters to define and manipulate 
the geometry of a model by establishing rules and relationships between different 
components, so that the design can generate mechanical engineering parts and improve 
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the overall design quality [23, 24]. Combining these insights and creating a clear 
differentiation to the other methods, we define parametric design as a process where 
interdependent parameters define the geometry of the design. By assigning discrete values 
to these parameters, the corresponding geometry is created.  

Algorithmic design, as defined by Caetano et al., involves a direct correlation between the 
algorithm and the generated model, ensuring traceability. It is considered a subset of 
generative design, with the focus on algorithm development to achieve specific design 
goals, often at the expense of producing fewer unexpected results compared to generative 
design [11]. This definition is supported by architectural perspectives that see algorithmic 
design as the systematic application of logical principles to generate space and form 
through rule-based logic, inherent in architectural programs, typologies, and building codes 
[25]. It often involves the use of scripting languages that allow designers to manipulate 
code directly, initiating computational procedures that create digital forms [26, 27]. 
Expanding this definition within the context of engineering, algorithmic design is further 
described as a process driven by a defined and logical set of rules that handle 
computational complexity [28]. It involves creating step-by-step procedures that ensure 
reliability, efficiency, and correctness in design solutions. Data plays a crucial role in this 
process, serving as both input and output, guided by mathematical rules within the 
algorithm [25]. This approach is widely used in mechanical engineering to automate and 
optimize the design process, employing a variety of deterministic and stochastic algorithms 
to solve complex engineering challenges [29, 30]. In summary, algorithmic design is a 
design approach based on manually implemented rules or algorithms, creating a direct and 
traceable causation between the algorithm and the design elements. This method allows 
algorithmic design to be used independently of other methods like generative design, 
offering a tool for generating, optimizing, and refining designs. 

Caetano et al. define generative design as a design paradigm that employs algorithmic 
descriptions with a higher degree of autonomy compared to parametric design. Generative 
design-based methods can generate complex outputs from simple algorithmic descriptions, 
resulting in a non-traceability between the program and the generated designs [11]. This 
definition aligns with various architectural views where GD is characterized by its capacity 
to enable indirect interaction between designers and the resulting products through 
generative systems. It leverages computational power to autonomously develop and 
evolve complex designs from simple inputs, often mimicking evolutionary processes in 
virtual environments [31–34]. GD's iterative nature facilitates the exploration of multiple 
design solutions, requiring designers to select the optimal outcome based on predefined 
constraints [35, 36]. By closely integrating with algorithmic and parametric design, GD 
offers an advanced framework for addressing complex design challenges and overcoming 
traditional limitations [37–39]. Extending the definition from Caetano, GD is viewed as a 
designer-driven, parametrically constrained process that operates on top of parametric 
CAD systems. It aims to create novel designs by leveraging modern computing and 
manufacturing capabilities [40]. Artificial intelligence tools can play a crucial role in 
generating and optimizing multiple design solutions based on imposed constraints and 
goals, typically through iterative processes [41]. Recent advancements include the use of 
topology optimization and cloud computing to produce multiple optimized designs under 
various conditions [42]. GD further supports the exploration of feasible design options 
based on user-defined constraints, enhancing conceptual design and product development 
[43]. Taking this additional information into account, we claim that generative design is a 
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method that autonomously generates multiple geometric variants using techniques like 
evolutionary algorithms, optimization algorithms, and artificial intelligence. These 
approaches enable the creation of complex designs, making GD a versatile and powerful 
tool in contemporary design practices. 

Methodology 

This section outlines the methodology used to evaluate and cluster relevant design 
automation software, culminating in a framework to assist companies in selecting 
appropriate software for their needs. The approach is based on a comprehensive literature 
review, followed by the identification, clustering, and analysis of design automation 
software specific to the mechanical engineering industry. The results of this clustering are 
visualized through Venn diagrams, providing clear insights into the software's capabilities 
and aiding in decision-making. 

The first step involved compiling an exhaustive list of design automation software that 
meets the functional criteria identified in the literature review. This list was generated 
through a combination of academic publications, online research, and with the help of AI 
tools like Google Gemini to identify relevant software providers. Given the varying demands 
across different industries, the focus was narrowed to proprietary software commonly used 
in mechanical engineering. Implementation of algorithms in open-source tools like python 
or matlab, which require extensive programming of the user, were excluded to maintain 
consistency and relevance for industrial applications. Tyflopoulos et al. already offers a 
comprehensive list of open source software and plug-ins for topology optimization [8]. 

Building on the literature for software selection, the clustering was based on six key criteria 
[44]: user interface, application, design scripting, storage method, integration, and sales 
model. Each software was evaluated against these criteria, which were deemed relevant 
for the mechanical engineering sector. 

The user interface determines how engineers interact with design automation software, 
directly influencing its usability and adoption within existing workflows. Three primary 
types of interfaces are defined: 

 CAD/Graphical: These interfaces allow users to define parameters such as 
dimensions, material properties, or load conditions through graphical menus. They 
align closely with workflows already familiar to many engineers, particularly in CAD 
environments, which simplifies adoption. Certain geometric regions can be 
constrained or optimized, ensuring that critical design constraints are respected. 
This approach is ideal for engineers with limited programming expertise, offering a 
smooth transition into design automation workflows. 

 Visual Scripting: In this approach, users interact with the software through 
graphical programming “nodes”. Nodes can represent parameters, variables, or 
geometric operations, and are connected to define workflows and generate 
geometry. Visual scripting is particularly advantageous for tasks involving repeated 
operations, as node configurations can be reused across different projects, saving 
time, which enables rapid iteration and customization of designs while remaining 
accessible to non-programmers. 
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 Code Scripting: These allow users to write text-based scripts to define geometries 
and automate workflows. This method offers the greatest degree of flexibility and 
customization but requires more advanced programming knowledge. 

DA software is evaluated based on its ability to address specific mechanical engineering 
challenges. These are divided into the following key applications: 

 Mechanical: This includes the optimization of parts subjected to mechanical loads, 
ensuring that designs meet performance criteria under stress. 

 Fluid Dynamics: Software capable of optimizing designs to manage fluid flow is 
essential for components like heat exchangers or aerodynamic surfaces. 

 Thermal: DA for heat transfer focuses on designing components to handle thermal 
loads effectively, such as cooling systems or heat sinks. 

Each of these applications ensures that DA software is capable of generating designs that 
meet the functional requirements of various engineering fields. Software limited to 
optimizing visual or aesthetic aspects is excluded from this analysis. 

Design scripting refers to automating geometry creation and design process through 
rule-based scripting mechanisms, enabling the rapid generation of design alternatives 
based on changing input parameters. While it overlaps conceptually with visual or code 
scripting, it focuses on automation logic and system integration rather than interface. 
Algorithms define the relationships between design requirements and geometric output, 
ensuring the generated designs meet specified criteria under varying boundary conditions. 
For example, parameterized sliders or input fields can adjust dimensions or loads, 
triggering the software to produce updated geometries without requiring manual 
intervention. 

Design scripting functionality often includes the definition of logical or geometrical 
relationships through algorithms, parameter mapping, and user-controlled input fields 
(e.g., sliders or input boxes). From an engineering perspective, it is especially valuable for 
managing product variants, configuring customer-specific requirements, or generating 
data-driven geometry transformations. 

In this study, a software is categorized as offering design scripting if it allows users to: 

 Define rules and conditions that govern geometric or structural behavior, 
 Generate or update entire designs automatically in response to varying parameters, 
 Do so without requiring reentry into the manual design process for each change. 

This distinguishes design scripting as a high-level design automation method, which 
supports both mass customization and parametric engineering workflows. As such, it 
represents a core enabler for advanced digital product development pipelines in mechanical 
engineering and beyond. As no external programming interfaces (APIs) or third-party 
scripting plug-ins are excluded from the study, only scripting environments that are 
natively embedded within the respective design software are considered compared to the 
description of CAD design scripting languages from Celani et al. [45] 

The storage method has significant implications for workflow efficiency, data security, 
and computational power. Two primary characteristics are evaluated: 

 Local: Data is stored and processed on local devices or company servers. This often 
requires significant investments in hardware infrastructure. 
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 Cloud-based: Data is processed and stored on remote servers, leveraging cloud 
infrastructure. Cloud solutions reduce hardware demands, allow real-time 
collaboration, and facilitate large-scale computational tasks through scalable 
resources. 

Cloud-based solutions are particularly advantageous for distributed teams and projects 
requiring high computational power. However, concerns about data security and internet 
dependency must be addressed. 

Integration evaluates whether the software can seamlessly extend its capabilities across 
additional stages of the design-to-manufacturing workflow: 

 Standalone: These are designed to perform specific DA tasks without offering 
additional features like simulation or AM pre-processing. 

 Integrated: These combine DA functionality with other critical steps, such as 
simulation, topology optimization, or AM-specific adaptations like support structure 
generation. Some solutions also offer API-based integration for custom workflows. 
This ensures smooth transitions between design and production, reducing time and 
effort in transferring data between platforms. 

The sales model of DA software influences its cost-effectiveness, accessibility, and 
suitability for different organizational needs: 

 Subscription-based: Users pay a recurring fee, typically monthly or annually. These 
often include regular updates and support services. 

 One-time purchase: Software is purchased outright, granting indefinite use without 
recurring costs. 

 Pay-per-design: Charges are based on the number of designs generated or 
processed. 

For each software, information was gathered through an extensive review of manufacturer 
websites, third-party reviews, tutorials, and white papers. Where necessary, direct 
inquiries were made to the software developers to clarify specific features. Each criterion 
was then evaluated as "fulfilled," "partially fulfilled," or "not fulfilled." The results were 
compiled into a clustering table, with criteria visually represented in Venn diagrams using 
the BioVenn tool [46]. The diagrams illustrate the overlap between software features, with 
software meeting multiple criteria positioned in overlapping regions. 

The methodology is designed to be adaptable across industries and evolving software 
landscapes. It can be extended by incorporating additional criteria (e.g. AI integration, 
compliance standards) and scaled through automated tools or integration into decision-
support systems.  

Software List and Clustering of the Results 

This chapter presents the compiled software list and the results of the clustering analysis. 
The outcome of this work is a decision-making tool for engineers and companies to select 
the most suitable DA software for their specific applications. Table 1 illustrates the 
clustering results, providing a comprehensive overview of design automation software 
relevant to engineers. The table not only showcases the software but also demonstrates 
the developed clustering methodology, with the criteria used for clustering listed in the top 
rows.  To ensure the continued relevance of this study, the clustering table is maintained 
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and regularly updated online at dap-aachen.de 1 , allowing users to access the latest 
software landscape and submit suggestions for modifications or additions directly to the 
author. 

Table 1: Tabular summary of the cluster, taking into account all software under consideration 
and fulfillment of the criteria. 
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Developer Software 
name 

Altair 

Inspire • ◦  ◐     ◦ • ◦ ◦ • • ◦ • • ◦ ◦ 
Optistruct • ◦ ◐ ◦ • ◦ ◦ • • • ◦ • ◦ ◦ 

Ansys 

Mechanical • ◦ ◐ ◦ • ◦ ◦ • • ◦ • • • • 
Discovery • ◦ ◐     ◦ • ◦ ◦ • • • ◦ • • • 
Fluent • ◦ ◐     • ◦ • ◦ • • ◦ • • • • 

Autodesk 

Fusion360 • ◦ ◐ • • ◦ ◦ • ◦ • ◦ • ◦ • 
Inventor • ◦ ◐     ◦ • ◦ ◦ • • • ◦ • ◦ • 

BETA ANSA • ◦ ◐ ◦ • ◦ ◦ ◦ • ◦ • • ◦ ◦ 

 

 

1 https://dap-aachen.de/project/design-automation-software-overview 

Legend: 

● fulfilled 

○ not fulfilled 

◐ partially fulfilled  
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Carbon CogniCAD • ◦ ◦ ◦ • • ◦ • ◦ • ◦ • ◦ • 
COMSOL Multiphysics • ◦ ◐ • • • ◦ ◦ • ◦ • ◦ • ◦ 

Dassault  
Systemes 

3DExperience • • ◐ • • • • • ◦ • ◦ • ◦ ◦ 
Abaqus • ◦ ◐ ◦ • ◦ ◦ • • ◦ • • ◦ ◦ 
Catia 3ds • • ◐ • • ◦ • • • • ◦ • ◦ ◦ 
Solidworks • ◦ ◐ ◦ • ◦ ◦ ◦ • • ◦ • • ◦ 

Diabatix ColdStream • ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ • • ◦ ◦ 
DYNAmore  
(Ansys) LS-TaSC • ◦ ◐     ◦ • ◦ ◦ ◦ • ◦ • • ◦ ◦ 
ENGYS 

HELYX-
Adjoint • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • ◦ 

FEMTools DDS • ◦ ◐ ◦ • ◦ ◦ ◦ • ◦ • • • ◦ 
FRIENDSHIP  
SYSTEMS 

CAESES • ◦ ◐     • ◦ ◦ • ◦ • ◦ • • ◦ ◦ 

Hexagon 

MSC Apex • ◦ ◐     ◦ • ◦ ◦ ◦ • ◦ • • ◦ ◦ 
MSC Nastran • ◦ ◐ ◦ • ◦ ◦ • • ◦ • • ◦ ◦ 

InfiniteForm, 
Inc 

InfiniteForm • ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • n/a n/a n/a 

INTES PERMAS • ◦ ◐     ◦ • • ◦ ◦ • ◦ • • ◦ ◦ 
LimitState FORM • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • • ◦ ◦ 
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Marius Kintel OpenSCAD ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ • / / / 

nTopology  nTop ◦ • ◐     • • • • • • ◦ • • ◦ ◦ 
PTC 

Creo  
Parametric • ◦ ◐     ◦ • ◦ ◦ • • • ◦ • ◦ ◦ 

Quint 
OPTISHAPE-
TS • ◦ ◐     ◦ • ◦ ◦ ◦ • ◦ • • ◦ ◦ 

Robert 
McNeel  
& Associates 

Rhino 8 • • • • • • • ◦ • • ◦ ◦ • ◦ 
Salome Salome 9 • ◦ • ◦ ◦ ◦ • ◦ • • ◦ / / / 

Siemens 

NX • • ◐     ◦ • ◦ • ◦ • • ◦ • ◦ ◦ 
SolidEdge • ◦ ◐ ◦ • ◦ ◦ ◦ • • ◦ • ◦ ◦ 

Simright Toptimizer • ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • • ◦ ◦ 
Synera Synera ◦ • • • • • • ◦ • • ◦ • ◦ • 
ToffeeX ToffeeX • ◦ ◦ • ◦ • ◦ • ◦ ◦ • • ◦ ◦ 
trinckle PARAMATE ◦ ◦ • ◦ ◦ ◦ • • ◦ • ◦ • ◦ ◦ 
VR&D GENESIS • ◦ ◐ ◦ • ◦ ◦ ◦ • ◦ • • ◦ ◦ 

 

The clustering analysis reveals several key trends in the DA software landscape. 91 % of 
the software options provide a CAD or graphical user interface, making it the most common 
interface type. In contrast, only 17 % of the software offers a visual scripting interface, 
and code scripting is the least commonly available, offered by just 14 % of the software. 
In terms of application-specific functionalities, 80 % of the DA software supports 
applications related to mechanical loads, making it the most widely supported application 
type. Software supporting fluid dynamics applications is available in 29 % of the cases, 
while only 29 % of the software includes features for thermal transfer applications, making 
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it the least common. Design scripting capabilities, which allow for automated design tasks, 
are provided by 29 % of the software. Regarding storage solutions, 4 % of the software 
supports cloud storage, whereas 80 % offers local storage options, indicating a preference 
for locally managed data among the software analyzed. The integration of DA software into 
existing workflows is split, with 43 % of the software being integrated solutions and 60 % 
stand-alone solutions. Due to the criteria used, there is no overlap between these 
categories. Finally, 86 % of the software operates on a subscription-based model, making 
it the predominant sales model. A one-time purchase option is available for 23 % of the 
software, while 20 % offer a pay-per-design or use model. Open-source software, such as 
OpenScad, was excluded from this analysis as it was the only software of its kind 
considered. A graphical representation of the results using Venn diagrams is shown in 
Figure 1. 

 

Figure 1: Graphical representation of the software classification results using Venn diagrams 
(absolute numbers in brackets) 

Discussion 

The analysis indicates that DA software can meet all the key requirements of engineers 
and companies, with each criterion being fulfilled by at least one software solution. A 
notable trend is the strong prevalence of CAD/graphical user interfaces, which suggests 
that many DA software solutions prioritize ease of use and accessibility by offering familiar 
interfaces. The mechanical application is the most frequently supported, while fluid 
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dynamics and thermal transfer applications are also well-represented. The significant 
presence of cloud-based solutions, offered by 51 % of the software, highlights the growing 
accessibility of computational power through cloud computing. Subscription models are the 
most common, reflecting the broader industry trend towards software-as-a-service (SaaS). 
The equal representation of integrated and stand-alone solutions provides companies with 
flexibility in choosing software that either focuses solely on DA or includes additional 
workflow steps.  

Design scripting stands out as a distinct and advanced feature within DA software, often 
supporting a broad range of applications, including mechanical, fluid dynamics, and 
thermal transfer. This makes design scripting a forward-looking technology, potentially 
representing the highest level of DA. The dominance of the CAD market by large companies 
such as Autodesk, Dassault Systèmes, Siemens, Hexagon, and PTC is evident, with these 
companies controlling 83 % of market revenue (2017) [47]. However, smaller companies 
have carved out a niche by adopting innovative approaches like design scripting, which is 
currently supported by only 9 out of 35 analysed software solutions. Historically, design 
scripting tools are relatively recent developments, with companies like Synera (2018), 
nTop (2015), and Trinckle (2012) leading the way [48–50]. Larger companies have only 
recently integrated design scripting tools, with Dassault Systèmes and Siemens 
implementing them in 2022 and 2020, respectively [51, 52]. This delay could be due to 
the higher entry barriers associated with design scripting, such as the need for specialized 
visual or code scripting interfaces, which require additional training and thus present a 
steeper learning curve [53]. While established software companies may perceive this as a 
challenging market to enter, smaller companies have leveraged design scripting to 
differentiate themselves and capture new market segments. Additionally, design scripting 
appears to be driven more by a technology push than by market demand, as evidenced by 
the scientific activity surrounding it and the fact that companies like Synera and Trinckle 
originated from research projects [48, 50]. 

The clustering results provide engineers and companies with valuable insights for selecting 
the most appropriate DA software. A suggested procedure for software selection would 
consider three steps. The process begins with a requirements analysis, where the user 
identifies which clustering characteristics are essential or desirable. These clusters can then 
be used to narrow down the list of DA software options by focusing on the most critical 
features. The Venn diagrams allow users to quickly identify software that meets these 
criteria. By progressively filtering through the diagrams, starting with the most important 
feature, the list can be reduced to approximately three software options. This shortlist can 
be further refined through additional literature review and, if available, comparative 
studies. 

For a more precise selection, the portfolio matrix shown in Figure 2 can be used. This 
matrix plots software options based on the diversity of variants they support and the 
complexity of the applications they handle. In this case, complexity can be defined as the 
number of functions the part should fulfil.  

The classification into four categories is derived from the clustering results: 

 Basic DA Software addresses low variant diversity and low complexity. These 
tools typically support at least one application and offer basic simulation features. 
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 Specialized DA Software handles high complexity but low variant diversity. These 
tools must support at least one specific application and include advanced simulation 
capabilities tailored to dedicated use cases. 

 Extended DA Software targets scenarios with high variant diversity and lower 
complexity. These tools support at least the functionality of design scripting, 
enabling flexible and efficient variant generation. 

 Performance DA Software supports both high complexity and high variant 
diversity. These tools include design scripting, multiple application domains, and 
advanced optimization or simulation tools (e.g., topology optimization or FEM). 

 

Figure 2: Portfolio matrix for DA software selection 

Conclusion and outlook 
In summary, the integration of DA with Additive Manufacturing presents a transformative 
approach to product development, addressing the increasing complexity and customization 
demands in modern engineering. This paper analyzed and clustered commercial software 
solutions for DA. 

The clustering analysis conducted reveals significant trends within the DA software 
landscape, emphasizing the predominance of user-friendly CAD interfaces and a notable 
shift towards cloud-based solutions. The findings indicate that while established companies 
dominate the market, innovative smaller firms are making strides by incorporating 
advanced features like design scripting, which enhances flexibility and efficiency in design 
tasks. 

This work proposes a systematic approach for engineers to evaluate their options of DA 
software based on key criteria such as user interface type, application focus, integration 
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capabilities, and sales models. By employing the developed clustering methodology and 
visual aids like Venn diagrams, users choose an appropriate DA software suited their 
specific needs. 

Future work should update the clustering methodology with new software and user 
feedback, explore applicability across industries, and include non-commercial tools. 
Developing a software-based clustering approach and enabling re-evaluation during 
implementation could further enhance the process. 

Moreover, emerging technologies such as machine learning-assisted simulation tools (e.g., 
Ansys SimAI) and generative AI systems are poised to significantly impact the DA software 
landscape. These technologies may enable predictive, data-driven design automation and 
further reduce manual input through intelligent design space exploration. Their integration 
should be closely monitored and incorporated into future evaluations of DA software 
capabilities. 
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